lunedì 30 ottobre 2017

ORIGINE DEL PROTO-ORGANISMO




Post n. 32


L’universo ha avuto origine 13,6 miliardi di anni fa. Fu proprio il Big Bang, l’origine dell’universo, a porre le premesse per l’origine della vita, perché fu da quell’origine che si formarono gli elementi chimici.
Nei post già pubblicati abbiamo descritto l’origine degli elementi e l’origine, dalla materia inanimata, di sostanze fondamentali per l’origine della vita in particolare amminoacidi, formaldeide (HCHO) e acido cianidrico(HCN). Inoltre si è anche descritto ampiamente come l’argilla, secondo l’ipotesi di Bernal, abbia potuto selezionare, accumulare e proteggere queste sostanze fondamentali. Le argille hanno funzionato quindi da agente fisico regolatore e un ruolo fondamentale deve aver avuto la silice colloidale. Questa ipotesi spiega con un modello unico selezione, accumulo e formazione dei polipeptidi, e ci indica anche simultaneità e localizzazione. Infatti, non è di nessun interesse che uno di questi processi avvenga al polo nord, un altro all’equatore e l’altro al polo sud ed in condizioni chimico-fisiche completamente diverse. E ancora, non è di nessun interesse se ad un dato istante vengono selezionati gli amminoacidi, da questi dopo un mese vengono selezionati i levo e dopo un anno si ha la catalisi
Si pone allora la domanda: come è avvenuta la sintesi delle proteine sulla superficie della silice?
Mentre, come abbiamo già esposto (post n.26), in ambiente acquoso la reazione di formazione dei polipeptidi è impossibile, all’interno dei doppi strati elettrici si crea un microambiente non acquoso che favorisce la formazione dei polipeptidi. Inoltre all’interno di questi compartimenti entra in gioco una termodinamica a piccole scale, dove la formazione del polipeptide diventa un processo spontaneo.
Quindi gli amminoacidi Levo accumulati all'interno dei doppi strati elettrici della silice colloidale, all'interno di micro-cavità argillose, danno origine a catene polipeptidiche avvolte intorno alla silice colloidale.
Le particelle di silice colloidale hanno, però, un vita molto breve. Se una particella di silice colloidale, sulla cui superficie si è sintetizzato un polipeptide, incontra altre particelle di silice colloidale, si formerà silice amorfa. Le interazioni elettriche tra particelle di silice colloidale sono così forti da deformarsi reciprocamente.
Il polipeptide, non trovando più le interazioni elettriche originarie, si stacca dalla superficie e va in soluzione all'interno della cavità.
Poiché la silice colloidale era elicoidale necessariamente elicoidale sarà anche l’andamento dei polipeptidi. Queste strutture in soluzione sono termodinamicamente instabili e, per effetto dell’agitazione termica e degli urti con le molecole di acqua dovrebbero decomporsi in amminoacidi e cadere nello stato 2 di energia.

Ma come abbiamo visto nel post n. 18, la decomposizione dei polipeptidi in amminoacidi pur essendo termodinamicamente possibile è cineticamente impossibile. Le molecole di acqua non hanno, a temperatura ambiente l’energia sufficiente per spezzare tutti i legami del polipeptide. La decomposizione avviene ma a velocità molto bassa; una barriera energetica impedisce, quindi, una rapida decomposizione. I polipeptidi contengono però, al suo interno, cariche positive e cariche negative.     
 Ciascun polipeptide, prima di essere decomposto lentamente dall’acqua in singoli amminoacidi e precipitare nello Stato 2 come previsto dalla termodinamica, stabilisce    spontaneamente legami tra le cariche positive e negative che stabilizzano la struttura elicoidale. La formazione della struttura stabile e ordinata, denominata α-elica, libera energia che aumenta l’entropia universale. L’α-elica si trova quindi in una fossa energetica, Stato 1.
È probabile però che la composizione in amminoacidi delle α-eliche fosse diversa nelle diverse zone del pianeta. Come gli esperimenti alla Miller hanno dimostrato, alcuni amminoacidi si formano in condizioni particolari. Per esempio Metionina e Cisteina si formano solo se nella miscela dell’atmosfere primordiale fosse stato presente Idrogeno Solforato (H2S). Ma questo composto poteva essere presente solo in vicinanza dei vulcani. Altri amminoacidi hanno bisogno di alte temperature non raggiungibile con gli esperimenti di Miller (post n. 25). Dobbiamo quindi prendere in considerazione il fatto che probabilmente la composizione delle α-eliche, sulla superfice del pianeta, poteva variare in conseguenza di condizioni chimico-fisiche locali.
E allora, non si può non concludere che i polipeptidi, prodotti dalle ordinarie forze chimico-fisiche e da condizioni chimico-fisiche locali, sotto forma di α-elica, dovevano trovarsi, in epoca prebiotica, in grande abbondanza, su tutta la superficie del pianeta, in ogni cavità, in ogni poro, in ogni nicchia di masse argillose.                  
Ma come evidenzia Duranti Marcello in “Introduzione allo studio delle proteine” 2015: «Alcune α-eliche contengono porzioni del cilindro idrofobiche, ciò dà origine a interazioni tra amminoacidi idrofobici dando origine a strutture super secondarie che sono il primo passo verso le strutture terziarie delle proteine».
È probabile quindi che all'interno di masse argillose, da alcune α-eliche, si siano formati spontaneamente strutture super secondarie e successivamente, con ulteriori 
aggregazioni, strutture terziarie o globulari, cioè enzimi ad ampio spettro di azione. La formazione delle strutture globulari, provoca l’espulsione di molecole di acqua che aumenta il caos universale e quindi termodinamicamente più stabili. La struttura terziaria occuperà adesso lo Stato 1, con un’energia inferiore di quella di due o tre singole α-eliche e sarà quindi termodinamicamente più stabile.
Quanto esposto fino adesso, cioè l’origine dei polipeptidi, è corredato in linea di massima da dati sperimentali. Il cammino seguito dai polipeptidi verso l’origine del proto organismo, e quindi verso l’origine della vita, è per la scienza un vero mistero. Ora, impegnarsi nella ricerca di un tale cammino si rischia, come scrisse Schrödinger, di rimediare una brutta figura. Ma siccome non sono un accademico, io non rischio nessuna figuraccia e quindi ci provo.
Non avendo a disposizione dati sperimentali, per comprendere l’origine del proto-organismo, possiamo procedere, con uno sforzo di logica e di immaginazione, solo attraverso una narrazione credibile.
E allora, immaginiamo una nicchia, una micro cavità all’interno di una massa argillosa dove si sono accumulati qualche centinaio di α-eliche. Alcune α-eliche hanno dato origine a strutture super secondarie e successivamente a strutture terziarie. Le strutture terziarie o globulari contengono al loro interno gruppi idrofobi e alla loro superficie gruppi idrofili con cariche elettriche residue. Strutture terziarie e α-eliche erano, quindi, sicuramente circondate da cluster di acqua a formare un complesso sistema interattivo proteico.
Volendo fare una estrema sintesi, se immaginiamo che sulla superficie di un polipeptide si trovano i residui con cariche negative, essi saranno avvolti da una nuvola di molecole di acqua con Hδ+ orientato verso il negativo.

Nella zona di contatto tra i due aggregati di acqua, l’acqua stessa si disporrà in modo da minimizzare la repulsione elettrostatica.
Dentro la cavità, tutti i componenti del sistema interattivo dovevano, quindi, essere compresi all'interno di una macrostruttura ordinata, “quasi cristallina”, di acqua ed il sistema interattivo proteico assumeva l’aspetto di un gel. A questa macrostruttura possiamo estendere il concetto espresso da Peter W. Atkins in riferimento all’α-elica riportato nel Post n. 18: La disposizione 
ordinata di tutte le molecole di questa macrostruttura a gel è favorita rispetto ad un ammasso irregolare in quanto corrisponde alla situazione di maggior caos dell’universo. La macrostruttura è certamente dotata di un caos minore a causa della disposizione ordinata, ma il caos universale è maggiore a causa dell’energia che si libera al momento della formazione dei forti legami idrogeno.  


Come il sasso sulla collina che ad ogni temporale sprofonda sempre di più e diventa più stabile, cosi la macrostruttura è precipitata in una fossa energetica, rappresentata dallo Stato 1, e presenta una grande stabilità chimica.Questo sistema interattivo tra molecole proteiche opera, quindi, all’interno del secondo principio della termodinamica, dove è l’ordine a generare caos, la formazione di strutture complesse a produrre entropia.All’interno di questa struttura a gel i componenti del sistema comunicavano attraverso la forza elettromagnetica generata dai potenziali di superficie. Ora è evidente che se dall’ambiente esterno una o più molecole ricche di energia vengono a contatto con il gel della micro cavità, il polipeptide che si trova in prossimità inizia a destabilizzarsi cambiando forma. Tale cambiamento induce l’acqua che avvolge il polipeptide ad assumere un’altra disposizione. Tale nuova disposizione costringerà tutte le molecole di acqua del gel a riorientarsi elettricamente passando l’informazione a tutte le macromolecole del sistema che in misura grande o piccola saranno soggette a cambiamenti della loro forma. L’energia accumulata da un singolo polipeptide, viene scaricata e condivisa da tutto il complesso sistema interattivo. La nuova disposizione di tutte le altre macromolecole del gel manderà un retrosegnale che indicherà alla prima macromolecola se respingere o cooptare, se sintetizzare e cosa sintetizzare. Avranno successo solo i sistemi che riusciranno ad elaborare un sistema di comunicazione che minimizza gli errori. Il complesso sistema interattivo è diventato un’entità e presenta una rudimentale omeostasi, cioè la capacità di mantenere un equilibrio chimico uniforme più o meno costante in un ambiente mutevole.
Ma come possiamo rappresentarci fisicamente questa entità, e che cosa è veramente l’omeostasi.
La formazione delle molecole dagli atomi coinvolge sempre cariche elettriche. Intorno alla molecola di un composto dobbiamo immaginarci un campo elettromagnetico con un suo contenuto energetico specifico, diverso di qualsiasi altro composto.  Tale campo elettromagnetico conferisce le proprietà al composto. Per esempio, in una goccia o in un bicchiere d’acqua il campo elettromagnetico che avvolge tutte le molecole conferisce, a temperatura ambiente, la liquidità dell’acqua. Il campo elettromagnetico che avvolge le molecole di un amminoacido gli conferisce la solubilità in acqua. Quando decine di amminoacidi si legano a formare una proteina enzimatica il campo elettromagnetico intorno alla sua molecola non solo conferisce le proprietà intrinseche come la solubilità, ma conferisce anche una funzione: la funzione enzimatica, cioè l’enzima, attraverso il suo campo elettromagnetico, riconosce e scinde o lega molecole specifiche. Quando centinaia di enzimi, avvolti da cluster di acqua, danno origine ad un sistema interattivo proteico, precipitato in una fossa energetica e quindi molto stabile, il campo elettromagnetico intorno e interno a tale sistema, organizza il sistema stesso e lo identifica come entità. Ora, il campo elettromagnetico dell’entità proteica genera sicuramente proprietà e funzioni, ma queste non sono a noi note.  E allora, poiché non conosciamo tali proprietà e funzioni, l'omeostasi potrebbe essere la risposta del campo elettromagnetico dell’entità rispetto a cambiamenti dell’ambiente esterno e del mezzo interno. L’omeostasi è comunque un’emergenza associata ad un complesso sistema interattivo precipitato in una fossa energetica e quindi in equilibrio chimico. L’omeostasi, attraverso reazioni chimiche e cicli di retroazione, tende a preservare questo equilibrio. Poiché questa entità presenta omeostasi possiamo identificarla come un primitivo citoplasma proteico.
Emergenza la si deve intendere sempre nel significato dato da Ernst Mayr (opera citata): «La comparsa di caratteristiche impreviste in sistemi complessi». «Essa non racchiude nessuna implicazione di tipo metafisica». «Spesso nei sistemi complessi compaiono proprietà che non sono evidenti (né si possono prevedere) neppure conoscendo le singole componenti di questi sistemi».
In realtà questo è vero anche per i sistemi semplici. L’acqua è costituita da Idrogeno e Ossigeno. Conoscendo le proprietà di questi due gas nessuno può prevedere le proprietà dell’acqua. E questo è vero per tutti i composti chimici. Solo che alle proprietà dei sistemi semplici e alle loro trasformazioni la chimica è riuscita ad associare delle leggi. Per contro ai sistemi complessi che conducono alla vita,che non presentano proprietà specifiche, noi associamo dei concetti.
Mentre la funzione enzimatica, pur essendo un’emergenza segue le leggi della chimica, l’omeostasi è un concetto.
Il secondo passaggio fondamentale verso l’origine del proto-organismo è la formazione di corte molecole di RNA.
Ma come è avvenuta la formazione dell’RNA?
L’RNA e costituito da nucleotidi (post n. 31), questi ultimi sono formati dal legame tra un gruppo fosfato (H2PO4-) e un nucleoside.
 I costituenti dei nucleosidi sono: uno zucchero, il D-Ribosio, appartenente alla famiglia degli zuccheri (in basso nella figura), e una delle quattro basi azotate: Adenina (nella figura) e Guanina, appartenenti alla famiglia delle Purine; Uracile e Citosina appartenenti alla famiglia delle Pirimidine.
Si pone allora il problema di capire se questi costituenti erano presenti in epoca prebiotica.
In relazione alle basi azotate, nel 1961 Juan Orò uno dei chimici più impegnati in ricerche di chimica prebiotica, riuscì a sintetizzare l’Adenina scaldando a 70°C una elevata concentrazione di (HCN) acido cianidrico in presenza di ammoniaca (NH3). In questo esperimento si ottennero parecchie sostanze organiche e tra queste adenina. In seguito, Orò riuscì a sintetizzare anche la guanina. In merito a questi esperimenti C. Ponnamperuma in “Origine della vita”, 1984 commenta: «[…] le concentrazioni usate da Orò erano di gran lunga troppo alte per corrispondere a una situazione prebiotica. Se le condizioni sperimentali fossero state davvero simili a quelle prebiotiche, se, per esempio, si fossero usate concentrazioni più basse, allora queste reazioni sarebbero di grande aiuto alla comprensione dell'origine delle purine nelle condizioni presenti nella fase prebiotica della Terra».
Purtroppo dopo questi esperimenti e per oltre 50 anni non risultano esperimenti significativi.
Come esposto nel post n.7, il motivo è probabilmente da ricercare nella supponenza dei sostenitori del “Mondo a RNA” che hanno trasformato un’ipotesi in un modello confermato, considerando superflua la ricerca sui costituenti degli acidi nucleici.
Dopo questo lungo periodo sembrava che la ricerca sull’origine dei costituenti degli acidi nucleici fosse caduta nell’oblio, quando due scienziati italiani Ernesto Di Mauro e Raffaele Saladino riaprono la partita.
I loro esperimenti descritti nel saggio “Dal big bang alla cellula madre l‘origine della vita” 2016, sono di notevole interesse. Innanzitutto perché, invece di utilizzare HCN (Acido cianidrico) che è un gas, hanno ottenuto le basi azotate utilizzando la HCONH2 (Formammide) che ha un punto di ebollizione oltre i 200°C, e che era sicuramente presente in epoca prebiotica perché prodotta dalla reazione tra HCN e H2O. Inoltre tali esperimenti avvengono utilizzando argilla o minerali sicuramente presenti in epoca prebiotica. Questi esperimenti rientrano a pieno titolo nella teoria di Bernal. Egli, infatti, aveva ipotizzato che l’argilla avrebbe potuto funzionare da principio regolatore per selezionare, accumulare, proteggere e catalizzare le sostanze fondamentali per l’origine della vita. Ci troviamo così ad avere, in epoca prebiotica, le basi necessarie per l’acido nucleico proprio all’interno di masse argillose, dove ha origine il primitivo citoplasma proteico.
In relazione al Ribosio è da evidenziare che la sua molecola, come le molecole degli amminoacidi, presenta una forma Destro e Levo, una l’immagine speculare dell’altra, ma solo il Destro viene utilizzato negli acidi nucleici. Il Ribosio, come l’Arabinosio, lo Xilosio e il Lisosio, è un pentamero della formaldeide (HCHO), nel senso che risulta formato da 5 molecole di formaldeide ma è, in soluzione acquosa, un composto instabile. Intorno al 1880 A. Butlerov trattando la formaldeide in ambiente fortemente basico, riuscì a sintetizzare il Ribosio, reazione nota come reazione del formoso. Questa reazione non opera in condizioni prebiotiche, inoltre assieme al Ribosio si sono forma una miscela di altri zuccheri, compresi gli altri tre pentameri, che avrebbero intralciato la formazione dell’acido nucleico (post n.10). In mancanza di ricerche valide, nel 1994 L. Orgel in Le scienze, “L’origine della vita sulla terra” scriveva: «Innanzitutto, in mancanza di enzimi, è problematico sintetizzare ribosio in quantità adeguate e con un sufficiente grado di purezza».
Nel 2008 in “Alle origini della vita” Christian De Duve prende in considerazione le ricerche di Prieur (2001) e di Ricardo (2004) i quali, utilizzando i borati sono riusciti a stabilizzare il Ribosio e limitare a formazione di altri zuccheri. Ricardo, in “Planetary Organic Chemistry and the Origins of Biomolecules” 2015, descrive nel dettaglio il meccanismo delle razioni e la funzione del boro ma riporta anche le critiche di Hazen che definisce il boro un elemento “esotico” per la chimica prebiotica. Christian De Duve riporta anche un lavoro di Ricardo et al. 2004 i quali hanno ottenuto i quattro pentosi (sia Destro che Levo) facendo reagire gliceraldeide con glicolaldeide. Anche Di Mauro e Saladino richiamano i lavori di Pieur e Ricardo ma aggiungono che simili risultati furono ottenuti anche impiegando Zirconati. Ora, il fatto è che i zirconati sono tutt’altro che “esotici”, essi, anche se in piccole quantità, si trovano distribuiti su tutta la superfice del pianeta e principalmente in rocce sedimentarie e metamorfiche. L’argilla, in relazione alla composizione, si distingue in caolinite, beidellite e montmorillonite. Nell’argilla beidellite è stata trovata una quantità di zirconati superiore alla media del pianeta. E così ci ritroviamo ancora una volta all’interno della teoria di Bernal. Quindi, in epoca prebiotica, oltre ad un primitivo citoplasma proteico contenute nelle cavità dell’argilla, è probabile che decine di basi azotate e decine di zuccheri, sia Destro che Levo, si trovassero diffuse all’interno di masse argillose. Da questa miscela di basi azotate e zuccheri, diffuse nelle masse argillose, soltanto quattro basi, Adenina, Citosina, Guanina e Uracile e solo un zucchero il D-Ribosio sono stati cooptati all’interno del rudimentale citoplasma proteico.
Ma perché proprio questi e non gli altri, quale costrizione ha imposto tale selezione.
A selezionare questi composti deve essere stata l’omeostasi del primitivo citoplasma proteico.
L’omeostasi deputata a mantenere l’equilibrio chimico permette, all'interno del citoplasma proteico, solo la diffusione di sostanze che mantengono tale equilibrio. 
Come abbiamo detto l'omeostasi, descritta come un concetto, potrebbe essere la risposta del campo elettromagnetico dell'entità rispetto ai cambiamenti dell'ambiente esterno e del mezzo interno. E allora, proviamo a dare una rappresentazione fisica dell'omeostasi
Immaginiamo di avere un bicchiere di acqua e di aggiungere zucchero. Possiamo semplicisticamente dire che il campo elettromagnetico intorno alle molecole di zucchero è compatibile con quello delle molecole di acqua e quindi lo zucchero si scioglie in acqua. Se invece nel bicchiere mettiamo una goccia di olio, il campo elettromagnetico intorno alla molecole dell’olio non è compatibile con quello dell’acqua, l’olio non si miscela con l’acqua e si raccoglie alla sua superficie. Ora, immaginiamoci come poteva essere il campo elettromagnetico generato, intorno alla nostra entità proteica, da centinaia di α-eliche. Queste α-eliche erano costituite da L-amminoacidi ed avevano tutte un andamento destrorso. Il campo elettromagnetico intorno all’entità proteica doveva riflettere l’andamento elicoidale destrorso delle α-eliche e quindi doveva essere necessariamente destrorso. Se l’entità proteica fosse stata costituita da α-eliche sinistrorse, il campo elettrico sarebbe stato sinistrorso cioè l’immagine speculare del campo elettrico dell’entità destrorsa. Ora, poiché le molecole di D-Ribosio e di L-Ribosio sono una l’immagine dell’altra, anche il loro campo elettrico deve essere uno l’immagine speculare dell’altro, cioè destrorso e sinistrorso. E allora, quando in epoca prebiotica molecole di D-Ribosio e di L-Ribosio cercarono di diffondere all’interno della cavità dove si trovava un’entità di α-eliche destrorse, l'omeostasi ha cooptato il D-Ribosio destrorso perché complementare al campo elettrico dell’entità mentre la sua immagine speculare, L-Ribosio sinistrorso, venne respinto.
Oltre al Ribosio nelle masse argillose erano presente sicuramente altri zuccheri simili al Ribosio, anch’essi Destro e Levo, come per esempio l’Arabinosio. Il D-Arabinosio al pari del D-Ribosio era sicuramente complementare al campo elettrico dell’entità proteica. Ma perché è stato scelto il D-Ribosio e non il D-Arabinosio.  

Come si vede dall’immagine la molecola di D-Arabinosio ha, rispetto al D-Ribosio un solo un gruppo –OH a sinistra invece che a destra. Per questa piccola differenza l’Arabinosio ha un punto di fusione di 157°C mentre il Ribosio ha un punto di fusione di 90°C. Ma i punti di fusione sono determinati dalla interazione delle cariche elettriche delle molecole, cioè in definitiva del campo elettromagnetico intorno alle molecole. Quindi i campi elettromagnetici delle molecole di D-Ribosio e di D-Arabinosio sono diversi. Ma come abbiamo già detto, al campo elettromagnetico specifico di ogni molecola di qualsiasi composto è associato un contenuto energetico specifico. Le molecole di D-Ribosio e D-Arabinosio hanno perciò contenuti energetici diversi. Allora, se il campo elettromagnetico intorno all'entità proteica ha scelto il D-Ribosio vuol dire che il contenuto energetico delle sue molecole mantengono l’equilibrio dell’entità proteica, mentre le molecole di D-Arabinosio lo avrebbero destabilizzato. L'omeostasi dell’entità proteica riconosce quindi differenze di campo elettromagnetico e di livello energetico delle molecole. Questo principio deve aver funzionato anche nella scelta delle basi azotate. Solo i campi elettromagnetici associati alle molecole di Adenina, Citosina, Guanina, Uracile sono compatibili con il campo elettromagnetico intorno e interno all'entità proteica, e i loro livelli energetici stabilizzano l’equilibrio termodinamico. In definitiva, l’omeostasi coopta le molecole dell’ambiente in base alla compatibilità del campo elettromagnetico e al contenuto energetico.
Semplicisticamente possiamo concludere che Adenina, Citosina, Guanina, Uracile e D-Ribosio solo solubili nell'entità proteica mentre non lo sono tutte le altre basi azotate e zuccheri.
L’entità proteica che presenta omeostasi l’abbiamo identificato come primitivo citoplasma proteico.
Ma il rudimentale citoplasma proteico altro non è che un insieme di enzimi. All’interno dell’entità, questi enzimi utilizzando il poco fosfato a disposizione nella soluzione, legano nel modo giusto il D-Ribosio con una delle basi e con fosfato dando origine ai nucleotidi. Atri enzimi legano nel modo giusto tre nucleotidi dando origine ai trinucleotidi. Come abbiamo ipotizzato nel post n. 27, in epoca prebiotica doveva esistere una interazione diretta tra un trinucleotide e un amminoacido specifico, un sistema chimico-fisico di riconoscimento e complementarietà. Ora, quando i trinucleotidi diffondono all’interno dell’entità e incontrano un’α-elica ogni trinucleotide si sovrappone allo specifico amminoacido dell’α-elica. Nel momento in cui ciascun amminoacido dell’α-elica è sovrapposto dallo specifico trinucleotide sarà l’azione enzimatica dell’α-elica a legare i trinucleotidi dando origine all’RNA, l’acido ribonucleico. Poiché l’RNA è stato sintetizzato da un enzima elicoidale, l’α-elica, esso risulta avere una struttura elicoidale. Se nella cavità erano presenti un centinaio di α-eliche diverse, esse daranno origine a un centinaio di RNA diversi. Gli acidi nucleici si sostituiscono alla silice e con gli amminoacidi in soluzione potranno sintetizzare gli enzimi che per varie cause venivano decomposti. Per utilizzare la metafora di Cairns-Smith: l’armatura, la silice, ha generato un arco, l’α-elica, che a sua volta ha generato un’armatura, RNA, che si sostituisce definitivamente alla prima.  La sintesi dei nucleotidi (Ribosio + base azotata +gruppo fosfato), la sintesi dei trinucleotidi e la sintesi dell’RNA avvengono tutte nel microambiente non acquoso della superfice degli enzimi. Queste condizioni permettono all’enzima una reattività straordinaria e diversa dalle reazioni in ambiente acquoso. Inoltre in tutte queste reazioni di sintesi si liberano molecole di acqua che andranno ad aumentare il caos universale. Si crea ancora ordine aumentando l’entropia: Caos dall’ordine.
Con la comparsa degli RNA l’entità si amplia dando origine ad un citoplasma contenente un sistema interattivo Acidi nucleici-Enzimi che sprofonda ancora di più nella fossa energetica. L'omeostasi mantiene l'equilibrio chimico attraverso il campo elettromagnetico intorno e interno all'entità
La nuova entità, cioè il citoplasma Acidi nucleici-enzimi, è il proto-organismo.
In conclusione, il secondo principio della termodinamica non potendo seguire la via del massimo caos rappresentata dalla fossa energetica dello stato 2, segue il cammino del caos possibile e scava una fossa energetica parallela rappresentata dallo stato 1. 
 Lu Lungo questo cammino, attraverso salti successivi l’ordine genera caos fino a dare origine al proto-organismo. Si è sempre considerato il proto-organismo come un sistema lontano dall’equilibrio termodinamico descritto dallo stato 2. In realtà il proto-organismo è un sistema lontano dal caos massimo ma è in equilibrio con il caos possibile e quindi sotto il controllo del 2° principio della     termodinamica.
E allora, questo è lo scenario che ci troviamo di fronte.
In miliardi e miliardi di cavità, nicchie, anfratti e spazi inter-cristallini di un imprecisato ma enorme numero di masse argillose si sintetizzano un numero infinito di polipeptidi che danno origine ad un primitivo citoplasma proteico. Molecole di basi azotate e di D-Ribosio contenute nelle masse argillose che vengono cooptate all’interno del citoplasma proteico. Polipeptidi elicoidali che sintetizzano l’acido nucleico. L’interazione acidi nucleici-enzimi dà origine ad un numero sterminato di proto-organismi.

                                                                                  Giovanni Occhipinti

Prossimo articolo: Dal proto-organismo alla cellula ( fine Marzo) 


venerdì 5 maggio 2017

The origin of life: The proto-organism




Post n.31 English

Research on the origin of life began only in the first half of the last century, after centuries of theological and philosophical discussions. Today, after more than half a century of research, scientists have only one certainty: life originated from inanimate matter.
We have dealt with all the issues that affect the origin of life in all articles published in the Blog. It is time to make a synthesis and try to figure out how life may have originated from inanimate matter. The statements and concepts of these articles on which the publish number will be placed in parentheses for those who want more clarification, will be mentioned briefly.
If the question is: how did life originate? We are beginning from life to understand how it may have originated.
We have defined the bacterial cell as the smallest vital entity, the first stage of life (post 30).
But all scientists agree that life cannot have started directly with the cell. Even bacterial cells in their simplicity, compared to the cells of higher organisms, are still of enormous complexity. It is therefore believed that between the chemical period, that is, the phase in which the fundamental substances of life accumulated and interacted, and the appearance of the cell, there was something intermediate that scientists call: proto-organism, or proto-cell or pre-cell phase. The term proto-organism used by Mario Ageno at the beginning of the 1980s is used here, and it seems to give the idea of ​​this intermediate stage better.
Now, the problem is that all scientists talk about proto-organism but nobody knows what it is.
So the problem is, first of all: to define the proto-organism, to understand how it may have originated from inanimate matter and then how it turned into cell.
Before we go ahead, some clarification is needed.
Firstly, for proto-organism, we don’t refer to a single and solitary entity that appeared on earth and from which only one cell emerged. With Proto-organism, we mean billions of billions of entities, chemically quite similar, spread across the surface of the planet. Perhaps for some researchers this is not so, anyway this is how we are considered in this discussion.
Secondly, the Proto-organism was a dynamic entity within which a chemical evolution took place, that is, processes that led billions of them to achieve the cellular state.
 Other proto-organisms, perhaps the majority, took the wrong path, they disappeared into the environment.
Finally, we do not know the processes within the proto-organism, we can only make hypotheses. In order to make some assumptions we must try to identify the chemical bases of the proto-organism, that are, the molecules that may have begun these processes.
Here is another problem, scientists not only do not have a definition of proto-organism, they do not agree on how to begin to define the proto-organism, that is identifying the chemical bases of the proto-organism.
In fact, for some scientists first compartments appeared lipid vesicles, liposome-like membranes, within proteins and nucleic acids accumulated, capable respectively of metabolism and replication. Pier Luigi Luisi is an authoritative exponent of “compartmentalists” and as he states in “Origine della vita e della biodiversità” 2013, proto-cell compartments are indispensable for
the origin of life.
 For many other scientists everything started through only metabolic processes within polymer membranes (first the metabolism), while for others it appeared only to replicate first molecules (before replication, RNA World).

it.wikipedia.org

But on these theories, Luisi writes (quoted work): «All share a major problem: each of these theories must start from a series of more or less arbitrary assumptions." In particular, the “compartmentalists” world has to assume that macromolecules (nucleic acids and enzymes) are already present in the prebiotic environment, the metabolic approach instead starts from the assumption that the enzymes already exist, and the RNA world is part of the assumption that a self-replicating RNA was available.
As we have repeatedly pointed out, making use of arbitrary assumption is unlikely to be a step forward and so, even in this case, there is no definition of the proto-organism.
So, in order to define a sustainable definition of proto-organism, instead of starting from arbitrary assumptions, we must start from certain data and possible scenarios in prebiotic era.
If the bacterial cell is the smallest vital entity, in order to identify the chemical bases of the proto-organism, can we start asking a question?
Which and how many macromolecules does a cell need to be considered living?
The bacterial cell is the smallest vital entity. Bacterial cells, however, do not all have the same number of macromolecules. The Escherichia coli DNA, for example, has about 3,000 genes and thus as many proteins as possible, while Pelagibacter Ubique contains about 1300. The smallest living bacterium known to date is a compulsive parasite, Mycoplasma Genitalium ccompartimentalists, supporters of the "RNA World" or metabolism, are convinced that a cell can live with a lower number of genes, and agree with a minimum genome of about 200 genes and as many proteins.
If this could have been the minimum cell content, if the proto-organism was something intermediate between the chemical period and the appearance of the cell, how could the proto-organism be differentiated from the minimum cell?
Let us then summarise the definition of life: metabolism, reproduction, evolution.
Which of these three properties belonged to the proto-organism?
Evolution is a characteristic of living organisms. So in order to have evolution we must have at least the minimum living organism, that is the cell. We don’t have the cell, but the proto-organism, and since it is not yet a living organism, evolution was absent. The proto-organism therefore had to be metabolism and reproduction. The point is that evolution comes from reproduction, if there is no evolution it’s because there is no reproduction and therefore the proto-organism could not contain the reproduction but only metabolism.
Can you separate metabolism and reproduction in a proto-organism?
According to Mario Ageno, "Biofisica 3" 1984, a system of only metabolism would have no biological significance because it would soon be dissipated in the environment without leaving any inheritance or trace. According to Ageno, the ability to reproduce is an indispensable feature for any system. On the other hand, as Dorothy Crawford explains about Viruses in the “Il nemico invisibile. Storia naturale dei virus”, there can be no reproduction without metabolism. Viruses are reproduced by exploiting host cell metabolism and if they do not find a host cell, they decompose.
So metabolism and reproduction cannot be separated, but proto-organism cannot contain reproduction. How do we get out of this dilemma?
The problem, as is often the case, is a terminology issue. The reproduction term contains the replication term, that is, a cell before reproduction must replicate its genome. Living organisms reproduce, molecules replicate. The Proto-organism is not a living organism and therefore does not reproduce. The term reproduction in general terms is often used, even for viruses. In fact, viruses within the cell do not reproduce but are replicated, ie they use the metabolic apparatus to replicate their own genome and increase the number until they stifle the cell. Hence, the proto-organism could not be a metabolic-reproductive system because reproduction is a feature of life, but it must have been a metabolic-replicative system. In other words, the proto-organism in order to survive only need, through a rudimentary metabolism, to replicate the damaged molecules.
So, if the proto-organism was a metabolic-replicative system, did it still needed a genome of 200 genes, needed for the minimum cell?
In summary, one is to look at which features of present living organisms may differ or be simpler in the proto-organism. Since there are different opinions on these topics, among several options, following Ockham's razor, we must choose the simplest and most credible one. We recall that William Ockham was a Franciscan Friar of the 14th century, and the Occam Razor principle is traced back to him: one must always start from simple, obvious assumptions and then add complexity if necessary. Certainly, it is not a universal principle but in our case it may be useful.
1) All researchers believe that the proto-organism originated in closed compartments.
As we have already explained, some scientists believe that these compartments were polymeric membranes. They, however, start from the assertion that the basic macromolecules (nucleic acids and proteins) already exist in the environment, and thus do not explain how these molecules formed. Furthermore, it is not known how these molecules have accumulated selectively within the membranes.
According to J. B. Bernal (post n.8), the compartments were, instead, cavities and intercrystalline spaces within clay granules. In these compartments constantly in contact with the outer environment, could accumulate and interact the molecules necessary for the origin of the proto-organism.



 In addition, macromolecules dispersion in the outer environment or their demolition due to ultraviolet rays could be avoided. It should be noted that the possibility of accumulation of simple molecules and polymer syntheses within the clay has been widely demonstrated in various researches. 
 This hypothesis on the compartments, shared by several researchers, seems more credible because it does not start from any assumption.
If the proto-organism originated within clay cavities, it was not necessary in that first phase to have the proto-cell membrane. If the latter element was absent, the genes and proteins necessary for its replication were absent, the genome had to be reduced by some units.
2) In all living organisms a nucleic acid, DNA, has the function of archiving genetic information. DNA portions, the genes, are transcribed in messenger nucleic acid, mRNA. It is the mRNA that translates protein information.
Has the DNA always existed? Almost all scientists today agree with what Mario Ageno wrote at the beginning of the 1980s in the chapter entitled “Dai precursori al proto-organismo” (quoted work). He made a depth analysis on the subject and wrote: «It is conceivable that at the beginning the transcription did not exist. A single nucleic acid with a single propeller could simultaneously carry out the chemical information archive function and actively intervene in synthesis operations». If the DNA was absent, the group of proteins necessary for its replication was absent. The genome of the proto-organism get much more simpler, at least by a dozen units.
3) Protein synthesis (post 27) is a fairly complex process. It needs a RNA messenger, transport RNA (adaptors), a ribosome and protein synthesis enzymes. Could such a system be present in the proto-organism?
Ageno still writes: «It is conceivable, indeed practically certain, that the ribosome, if it existed, was initially different from now, reducing itself only to the nucleic component. But it is also possible that at the beginning the ribosome did not exist and the synthesis occurred by interaction between the RNA and the loaded adapters with their amino acids. It is likely that the adapters, possibly simpler than the current ones, existed from the beginning. Otherwise, it would be necessary to postulate specific direct interactions between nucleotide and amino acid triplets, which do not seem to exist at least with sufficient intensity and specificity to influence decisively on the alignment of amino acids in the protein [...] ». Now, since here it is believed that in prebiotic period a direct and specific interaction between the tri-nucleotide and the amino acid existed (post 27), it meant even tRNA were absent.
The ribosome of the present bacteria contains about 50 proteins. The tRNA need at least 20 specific enzymes to bind each amino acid to each tRNA. Once aligned the tRNA, several other enzymes are needed to bind the amino acids in the polypeptide. If all this complex system did not exist, if the tRNA were absent, the proteins, and therefore the genes needed for their synthesis, were also absent, the genome of the proto-organism is therefore considerably reduced.
Ultimately, an approximate calculation of the above points leads to the conclusion that proto-organism could begin their existence with a genome of about 100 genes and as many proteins.
We then begin from the hypothesis that the port-organism contained a genome of RNA of about 100 genes.
As we have already mentioned (post 29), around 1970, the hypothesis that proteins were made up of domains, that is, a sequence of amino acids that is preserved during evolution, has been advanced. In 1974, Rossman identified a domain of about 70 amino acids present in many enzymes and suggested that even this domain was of prebiotic origin (Russell F. Doolittle, “Le Proteine”, Science 1985). But many scientists today believe that the domains in prebiotic era were smaller and consisted mainly of -Helix of about 20 amino acids (Mike Williamson, “Come funzionano le proteine” 2013).
Now, for every gene a protein, if the 100 genes encode for 100 proteins through 20 amino acids, what was the size of the genome of the proto-organism?
According to the genetic code, three triplets (ie three nucleotides) encode an amino acid (3: 1), so to specify 100 proteins of 20 amino acids, meaning 2000 amino acids, a 6,000-nucleotide genome is required. Let us consider for example the image of one of the four nucleotides: Adenosine-5-phosphate


So to give rise to a genome of 100 genes, 6000 of these nucleotides should have spontaneously and fairly bounded. No chemist and no biologist believes in the possibility of forming such a large molecule in prebiotic times. We can certainly conclude that such a genome did not exist at the beginning. It is very likely that when the proto-organism began to move its first steps, within it instead of one and only genome of 100 genes, there were 100 genes independent, separate from one another, each encoding a protein.
Therefore we can conclude as follows:
The proto-organism originated within clay cavities, where the essential substances for the origin of life accumulated and interacted. It was in constant contact with the environment for the supply of the substances necessary for its chemical evolution. There was still no DNA as a genetic information archive, nor did a single RNA genome carry out the dual function of archive of genetic information and protein synthesis and there were no tRNA for the transport of amino acids.
The proto-organism had to be composed of single RNA genes, about 100, initially completely independent, and about 100 proteins. Protein and RNA constituents, and small organic molecules from the outside environment, had to be present inside the proto-organism. RNA synthesis and protein synthesis took place by direct interaction between amino acids of a protein and nucleotides, and between RNA nucleotides and amino acid respectively (post 29).
Once defined the proto-organism, two questions arise:
How did the proto-organism originate from inanimate matter?
How did the passage from the proto-organism to the cell occur?

Giovanni Occhipinti

Translated by: Sydney Isae Lukee


lunedì 1 maggio 2017

ORIGINE DELLA VITA: 1) Il Protoorganismo




Post.n.31

La ricerca sull'origine della vita, dopo secoli di discussioni teologiche e filosofiche, ha avuto inizio soltanto nella prima metà del secolo scorso. Oggi, dopo oltre mezzo secolo di ricerche, gli scienziati hanno una sola certezza: la vita ha avuto origine dalla materia inanimata.
In tutti gli articoli pubblicati nel Blog abbiamo affrontato tutte le problematiche che investono l’origine della vita. È giunto il momento di fare una sintesi e cercare di capire in che modo la vita può aver avuto origine dalla materia inanimata. Verranno richiamati brevemente affermazioni e concetti di tali articoli, sui quali verrà posto, tra parentesi, il numero del post per chi volesse maggiori chiarimenti.
Se la domanda è: come ha avuto origine la vita? Allora partiamo dalla vita per capire come essa possa aver avuto origine.
Abbiamo definito la cellula batterica l’entità minima vitale, il primo stadio della vita (post n. 30).
Ma tutti gli scienziati convengono che la vita non può avere avuto inizio direttamente con la cellula. Anche le cellule batteriche, pur nelle loro semplicità, rispetto alle cellule degli organismi superiori, sono comunque di enorme complessità. Si ritiene quindi che tra il periodo della chimica, cioè la fase in cui si accumularono e interagirono le sostanze fondamentali della vita, e la comparsa della cellula, sia esistito qualcosa di intermedio che gli scienziati chiamano: proto-organismo, o proto-cellula o fase pre-cellulare. Qui viene utilizzato il termine, proto-organismo, già utilizzato da Mario Ageno agli inizi degli anni ’80, e che sembra dare al meglio l’idea di questo intermedio.
Ora, il problema è che tutti gli scienziati parlano di proto-organismo ma nessuno sa cos'è.
Si pone quindi il problema, innanzitutto di definire il proto-organismo, capire come esso può aver avuto origine dalla materia inanimata e, successivamente, come ha fatto a trasformarsi in cellula.
Prima di proseguire sono necessarie della precisazioni.
In primo luogo, per proto-organismo non si intende un’entità unica, solitaria, comparsa sulla terra e da cui emerse una sola ed unica cellula. Per proto-organismo si intende miliardi di miliardi di entità, chimicamente abbastanza simili, diffusi su tutta la superficie del pianeta. Forse per alcuni ricercatori non è così, in ogni modo, cosi esso è inteso in questa trattazione.
In secondo luogo, il proto-organismo fu un’entità dinamica, all'interno del quale avvenne un’evoluzione chimica, cioè processi che hanno portato miliardi di loro a raggiungere lo stato cellulare. Altri proto-organismi, forse la maggior parte, imboccata la strada sbagliata si sono dispersi nell'ambiente.
Infine, noi non conosciamo i processi avvenuti all'interno del proto-organismo, possiamo fare solo delle ipotesi. Ma per poter fare delle ipotesi dobbiamo cercare individuare le basi chimiche del proto-organismo, cioè le molecole che possono aver dato inizio a questi processi.
Qui sorge un altro problema, gli scienziati non solo non hanno una definizione di proto-organismo, ma non sono nemmeno d’accordo su come iniziare per definire il proto-organismo, cioè come individuare le basi chimiche del proto-organismo.
Infatti, per alcuni scienziati per prima apparvero dei compartimenti, vescicole di acidi grassi, membrane tipo liposomi, all'interno dei quali si accumularono proteine e acidi nucleici, capaci rispettivamente di metabolismo e replicazione.  
it.wikipedia.org
 
 Pier Luigi Luisi è un autorevole esponente dei “compartimentalisti” e come egli stesso afferma in “Sull'origine della vita e della biodiversità” 2013, i compartimenti proto-cellulari sono imprescindibili per l’origine della vita.
 Per molti altri scienziati tutto ebbe inizio attraverso processi unicamente metabolici all'interno di membrane polimeriche (prima il metabolismo), mentre per altri apparvero per prima molecole unicamente replicative (prima la replicazione, Mondo a RNA).
Ma in merito a queste teorie Luisi scrive (opera citata): «Tutte condividono un problema principale: ognuna di queste teorie deve partire da una serie di assunzioni più o meno arbitrarie». In particolare, il mondo comportamentalista deve assumere che le macromolecole (acidi nucleici ed enzimi) fossero già presenti nell'ambiente prebiotico, l’approccio metabolico parte invece dall'assunzione che fossero già presenti gli enzimi, il mondo a RNA parte dall'assunzione che fosse a disposizione un RNA autoreplicante.
Come abbiamo più volte sottolineato, a fare uso di assunzione arbitrarie difficilmente si fanno passi avanti e così, anche in questo caso, della definizione di proto-organismo non c’è nessuna traccia.
Allora, per arrivare ad una sostenibile definizione di proto organismo, invece di partire da assunzioni arbitrarie dobbiamo partire da dati certi e scenari possibili in epoca prebiotica.
Se la cellula batterica è l’entità minima vitale, per identificare le basi chimiche del proto-organismo, possiamo partire ponendoci una domanda?
Quali e quante macromolecole ha bisogno una cellula per poter essere considerata vivente?
La cellula batterica è l’entità minima vitale. Le cellule batteriche, però, non hanno tutte lo stesso numero di macromolecole. Il DNA dell’Escherichia coli, per esempio, possiede circa 3000 geni e quindi altrettante possibili proteine, mentre Pelagibacter Ubique ne contiene circa 1300. Il più piccolo batterio vivente a tutt'oggi noto è un parassita obbligato, il Micoplasma Genitalium che contiene circa 500 geni e altrettante possibili proteine. La maggior parte degli scienziati, siano essi comportamentalisti, sostenitori del “Mondo a RNA” o del metabolismo, sono però convinti che una cellula possa vivere con un numero di geni inferiore, e concordano con un genoma minimale di circa 200 geni e altrettante proteine.
Se questo potrebbe essere stato il contenuto della cellula minimale, se il proto-organismo fu qualcosa di intermedio tra il periodo della chimica e la comparsa della cellula, in che cosa poteva differenziarsi il proto-organismo dalla cellula minimale?
Riprendiamo allora la definizione di vita: metabolismo, riproduzione, evoluzione.
Quale di queste tre proprietà apparteneva già al proto-organismo?
L’evoluzione è una caratteristica degli organismi viventi. Quindi per avere evoluzione dobbiamo avere almeno l’entità minima vitale, cioè la cellula. Noi, però, non abbiamo la cellula, ma il proto-organismo, e poiché esso non è ancora un organismo vivente l’evoluzione era assente. Il proto organismo doveva, quindi, essere costituito da metabolismo e riproduzione. La questione è che l’evoluzione discende dalla riproduzione, se non c’è evoluzione è perché non c’è riproduzione e quindi il proto-organismo non poteva contenere la riproduzione, ma doveva contenere solo il metabolismo.
Ma si possono separare metabolismo e riproduzione in un proto-organismo?
Secondo Mario Ageno, “Lezioni di Biofisica 3” 1984, un sistema composto di solo metabolismo non avrebbe alcuna importanza dal punto di vista biologico perché ben presto si sarebbe dissipato nell'ambiente senza lasciare né eredita né traccia. Secondo Ageno la capacità di riprodursi è una caratteristica irrinunciabile per qualunque sistema. D’altra parte, come ha spiegato Dorothy Crawford a proposito dei Virus in ”Il nemico invisibile” 2002, non può esistere riproduzione senza metabolismo. I Virus si riproducono sfruttando il metabolismo della cellula ospite e se non trovano una cellula ospite si decompongono.
Quindi metabolismo e riproduzione non sarebbero separabili, ma il proto-organismo non può contenere la riproduzione. Come usciamo da questa dilemma?
Il problema, come spesso accade, va ricondotto ad una questione di terminologia. Il termine riproduzione contiene il termine replicazione, cioè una cellula prima di riprodursi deve replicare il proprio genoma. Gli organismi viventi si riproducono, le molecole si replicano. Il proto-organismo non è un organismo vivente e quindi non si riproduce. Si usa spesso il termine riproduzione in senso generale, anche per i Virus. In realtà, i Virus all'interno della cellula non si riproducono ma si replicano, cioè sfruttano l’apparato metabolico per replicare il proprio Genoma e aumentare di numero fino a soffocare la cellula. Quindi il proto-organismo non poteva essere un sistema metabolico-riproduttivo perché la riproduzione è una caratteristica della vita ma doveva essere, verosimilmente, un sistema metabolico-replicativo. In altre parole il proto-organismo per sopravvivere aveva solo la necessità, attraverso un metabolismo rudimentale, di replicare le molecole danneggiate.
Allora, se il proto-organismo fu un sistema metabolico-replicativo, necessitava ancora di un genoma di 200 geni, necessari per la cellula minimale?
In sintesi si tratta di ricercare quali caratteristiche degli attuali organismi viventi possono essere state, nel proto-organismo, diverse o più semplici di quelle attuali. Poiché su questi argomenti esistono opinioni diverse, tra diverse opzioni, facendo seguito al rasoio di Occam, dobbiamo scegliere quella più semplice e credibile. Ricordiamo che William Ockham era un frate francescano del 14° secolo, a lui si fa risalire il principio del rasoio di Occam: bisogna sempre partire da supposizioni semplici, ovvie e aggiungere successivamente la complessità se necessario. Certamente non è un principio universale ma nel nostro caso può esserci utile.
1) Tutti i ricercatori ritengono che il proto-organismo abbia avuto origine all'interno di compartimenti chiusi.
Come abbiamo già esposto, alcuni scienziati ritengono che questi compartimenti fossero membrane polimeriche. Essi però partono dall'assunto che fossero già presente, nell'ambiente, le macromolecole fondamentali (acidi nucleici e proteine) e non spiegano, quindi, come queste molecole si siano formate. Inoltre non è dato conoscere come queste molecole si siano accumulate, selettivamente, all'interno delle membrane.
Secondo J. B. Bernal (post n.8) i compartimenti furono, invece, cavità e spazi inter-cristalline all'interno di granuli di argilla. In questi compartimenti, in costante contatto con l’ambiente esterno, si potevano accumulare e interagire le molecole necessarie all'origine del proto-organismo. Inoltre, si poteva evitare la dispersione delle macromolecole nell'ambiente esterno o la loro demolizione
 
 per l’azione dei raggi ultravioletti. Si tenga presente che la possibilità di accumulo di molecole semplici e sintesi polimeriche, all'interno delle argille, è stata ampiamente dimostrata in varie ricerche.

Questa ipotesi sui compartimenti, condivisa da parecchi ricercatori, sembra più credibile perché non parte da nessun assunto.
Se il proto-organismo ebbe origine all'interno di cavità argillose non era necessaria, in quella prima fase, la membrana proto-cellulare. Se quest’ultimo elemento era assente, erano assenti anche i geni e le proteine necessarie alla sua replicazione, il genoma doveva, quindi, ridursi di alcune di unità.
2) In tutti gli organismi viventi un acido nucleico, il DNA, ha la funzione di archivio dell’informazione genetica. Porzioni di DNA, i geni, vengono trascritti in acido nucleico messaggero, mRNA. È l’mRNA che traduce l’informazione in proteine.
Ma il DNA è sempre esistito? La quasi totalità degli scienziati, è oggi d’accordo su quanto scrisse Mario Ageno, già all'inizio degli anni 80, nel capitolo “Dai precursori al proto-organismo” (opera citata). Egli ha fatto un’analisi approfondita sull'argomento e scrive: «È concepibile che, all'inizio, la trascrizione non esistesse. Un unico acido nucleico ad elica singola poteva contemporaneamente svolgere la funzione di archivio dell’informazione chimica ed intervenire attivamente nelle operazioni di sintesi». Se il DNA era assente erano assenti anche il gruppo delle proteine necessarie alla sua replicazione. Il genoma del proto-organismo si semplifica ancora, almeno di una decina di unità.
3)  La sintesi delle proteine (post n. 27) è un processo abbastanza complesso. Essa necessita di un RNA messaggero, di RNA di trasporto (adattatori), un Ribosoma, di enzimi per la sintesi del polipeptide proteico. Un simile sistema poteva essere presente nel proto-organismo?
 Scrive ancora Ageno: «È concepibile, anzi praticamente certo, che il ribosoma, se esisteva, fosse inizialmente diverso da ora, riducendosi alla sola componente nucleica. Ma è anche possibile che all'inizio il ribosoma non esistesse e la sintesi avvenisse per interazione tra l’RNA e gli adattatori caricati coi relativi amminoacidi. È invece probabile che gli adattatori, eventualmente più semplici di quelli attuali, esistessero fin dall'inizio. In caso contrario infatti si dovrebbero postulare interazioni dirette specifiche tra triplette di nucleotidi ed amminoacidi, interazioni che non sembrano esistere almeno con una intensità e specificità sufficiente per influire in modo determinante sull'allineamento degli amminoacidi nella proteina […]». Ora, poiché qui si ritiene che sia esistita, in epoca prebiotica, un interazione diretta e specifica tra il tri-nucleotide e l’amminoacido (post n. 27), anche gli adattatori, i tRNA, erano assenti.
Il ribosoma degli attuali batteri contiene circa 50 proteine. I tRNA necessitano di almeno 20 enzimi specifici per legare ciascun amminoacido ad ogni tRNA. Una volta allineati i tRNA sono necessari diversi altri enzimi per legare gli amminoacidi nel polipeptide. Se tutto questo sistema complesso non esisteva, se anche i tRNA erano assenti, erano assenti anche le proteine, e quindi i geni, necessarie alla loro sintesi, il genoma del proto-organismo si riduce notevolmente.
In definitiva, un calcolo approssimato dei punti sopra esposti porta a concludere che proto-organismo poteva iniziare la propria esistenza con un genoma di circa 100 geni e altrettante proteine.
Partiamo allora dall’ipotesi che il porto-organismo contenesse un genoma di RNA di circa 100 geni.
Come abbiamo già esposto (post n. 29), intorno al 1970 è stata avanzata l’ipotesi che le proteine fossero costituite da domini, cioè una sequenza di amminoacidi che si conserva nel corso dell’evoluzione. Nel 1974 Rossman ha individuato un dominio di circa 70 amminoacidi presente in molti enzimi e propose che tale dominio fosse addirittura di origine prebiotica (Russell F. Doolittle “Le Proteine” Le Scienze 1985). Ma oggi molti ritengono che i domini, in epoca prebiotica, fossero più piccoli e costituiti principalmente da ꭤ-eliche di circa 20 amminoacidi (Mike Williamson,” Come funzionano le proteine” 2013).
Ora, ogni gene una proteina, se i 100 geni codificavano per 100 proteine mediamente di 20 amminoacidi, quali erano le dimensioni del genoma del proto-organismo?
Secondo il codice genetico tre triplette (cioè tre nucleotidi) codificano un amminoacido (3:1), quindi per specificare 100 proteine di 20 amminoacidi cioè 2000 amminoacidi è necessario un genoma composto da 6000 nucleotidi.  Riprendiamo come esempio l’immagine di uno dei quattro nucleotidi: l’Adenosin-5-fosfato
https://it.wikipedia.org/wiki/Adenosina_monofosfato

Quindi per dare origine ad un genoma di 100 geni avrebbero dovuto legarsi, spontaneamente e nel modo giusto 6000 di questi nucleotidi. Nessun chimico e nessun biologo crede alla possibilità della formazione, in epoca prebiotica, di una così grande molecola. Possiamo sicuramente concludere che un simile genoma, inizialmente, non esisteva. È molto probabile invece che quando il proto-organismo comincia a muovere i primi passi, al suo interno invece di un unico genoma di 100 geni erano presenti 100 geni indipendenti, separati uno dall'altro, ciascuno codificante per una proteina.
Pertanto possiamo concludere come segue:
Il proto-organismo ebbe origine all'interno di cavità argillose, dove si accumularono e interagirono le sostanze fondamentali per l’origine della vita. Esso era in costante contatto con l’ambiente per l’approvvigionamento delle sostanze necessarie alla sua evoluzione chimica. Non esisteva ancora né il DNA come archivio dell’informazione genetica, né esisteva un unico genoma ad RNA a svolgere la doppia funzione di archivio dell’informazione genetica e sintesi delle proteine e non erano presenti i tRNA per il trasporto degli amminoacidi.
Il proto-organismo doveva risultare costituito da singoli geni di RNA, circa 100, inizialmente completamente indipendenti e di circa 100 proteine. All'interno del proto-organismo dovevano essere presenti i costituenti delle proteine e dell’RNA, e piccole molecole organiche provenienti dall'ambiente esterno. La sintesi degli RNA e la sintesi delle proteine avveniva per interazione diretta rispettivamente tra amminoacido di una proteina e nucleotidi e tra nucleotidi dell’RNA e amminoacidi (post n. 29).
Definito il proto-organismo si pongono due domande:
Come ha avuto origine il proto-organismo dalla materia inanimata?
Come è avvenuto il passaggio dal proto-organismo alla cellula?

                                                                                              Giovanni Occhipinti


Prossimo articolo: Origine della vita, dagli elementi al proto-organismo (fine Luglio)
Troppo ottimista, pensavo di farcela prima delle vacanze, la pubblicazione è rinviata fine Ottobre